162k views
0 votes
Find the value of tan( π + θ) if θ terminates in Quadrant III and sinθ = -5/13

User Jcxavier
by
4.8k points

1 Answer

3 votes

ANSWER


\tan(\pi + \theta)= (5)/(12)

Step-by-step explanation

We first obtain


\cos( \theta)

using the Pythagorean Identity.


\cos ^(2) ( \theta) + \sin ^(2) ( \theta) = 1


\implies \: \cos ^(2) ( \theta) + ( - (5)/(13) )^(2) = 1


\implies \: \cos ^(2) ( \theta) + (25)/(169)= 1


\implies \: \cos ^(2) ( \theta) = 1 - (25)/(169)


\implies \: \cos ^(2) ( \theta) = (144)/(169)


\implies \: \cos ( \theta) = \pm \: \sqrt{(144)/(169) }


\implies \: \cos ( \theta) = \pm \: (12)/(13)

In the third quadrant, the cosine ratio is negative.


\implies \: \cos ( \theta) = - \: (12)/(13)

The tangent function has a period of π and
\pi + \theta is in the third quadrant.

This implies that:


\tan(\pi + \theta)= \tan( \theta)


\tan(\pi + \theta)= ( \sin( \theta) )/( \cos( \theta) )


\tan(\pi + \theta)= ( - ( 5)/(13) )/( - (12)/(13) )

This gives us:


\tan(\pi + \theta)= (5)/(12)

User RN Kushwaha
by
5.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.