38.5k views
1 vote
What is the following simplified product? Assume

What is the following simplified product? Assume-example-1
User Awdk
by
8.0k points

2 Answers

4 votes

Answer:

The simplified product is:


10x^4√(6)+x^3√(30x)-10x^4√(3)-x^3√(15x)

Explanation:

The expression is given by:


(√(10x^4)-x√(5x^2))(2√(15x^4)+√(3x^3))

Now we know that:


√(x^2)=x\\\\and\\\\√(x^4)=√((x^2)^2)=x^2

Hence, we get the expression as follows:


(√(10x^4)-x√(5x^2))(2√(15x^4)+√(3x^3))=(x^2√(10)-x\cdot x√(5))(2x^2√(15)+x√(3x))

Now, we will use the property that:


(a+b)(c+d)=a(c+d)+b(c+d)

Hence, we have the expression as:


=x^2√(10)(2x^2√(15)+x√(3x))-x^2√(5)(2x^2√(15)+x√(3x))


=2x^4√(10)√(15)+x^3√(10)√(3x)-2x^4√(5)√(15)-x^3√(5)√(3x)

Now we know that:


√(a)√(b)=√(ab)

i.e. we have:


=2x^4√(150)+x^3√(30x)-2x^4√(75)-x^3√(15x)\\\\=2x^4√(5^2\cdot 6)+x^3√(30x)-2x^4√(5^2\cdot 3)-x^3√(15x)\\\\=10x^4√(6)+x^3√(30x)-10x^4√(3)-x^3√(15x)

User PRINCESS FLUFF
by
8.0k points
4 votes

Answer:

The correct answer option is D.
10x^4√(6)+x^3√(30x)-10x^4√(3)-x^3√(15x).

Explanation:

We are given the following expression:


\left ( \sqrt { 10 x ^ 4 } -x \sqrt { 5 x ^ 2 } \right ) \left ( 2 \sqrt { 15 x ^ 4 } + \sqrt { 3 x ^ 3 } \right )

Assuming that
x\geq 0, we are to find its simplified product.


\left ( \sqrt { 10 x ^ 4 } -x \sqrt { 5 x ^ 2 } \right ) \left ( 2 \sqrt { 15 x ^ 4 } + \sqrt { 3 x ^ 3 } \right )


\\\\ = 2 \sqrt { 150 x ^ 8 } + \sqrt { 3 0 x ^ 7 }-2x√(75x^6)-x√(15x^5) \\\\ =2√(25*6x^8)+x^3√(30x)-2x√(25*3x^6)-x^3√(15x) \\\\ =10x^4√(6)+x^3√(30x)-10x^4√(3)-x^3√(15x)

User Dalvtor
by
8.1k points