38.5k views
1 vote
What is the following simplified product? Assume

What is the following simplified product? Assume-example-1
User Awdk
by
8.0k points

2 Answers

4 votes

Answer:

The simplified product is:


10x^4√(6)+x^3√(30x)-10x^4√(3)-x^3√(15x)

Explanation:

The expression is given by:


(√(10x^4)-x√(5x^2))(2√(15x^4)+√(3x^3))

Now we know that:


√(x^2)=x\\\\and\\\\√(x^4)=√((x^2)^2)=x^2

Hence, we get the expression as follows:


(√(10x^4)-x√(5x^2))(2√(15x^4)+√(3x^3))=(x^2√(10)-x\cdot x√(5))(2x^2√(15)+x√(3x))

Now, we will use the property that:


(a+b)(c+d)=a(c+d)+b(c+d)

Hence, we have the expression as:


=x^2√(10)(2x^2√(15)+x√(3x))-x^2√(5)(2x^2√(15)+x√(3x))


=2x^4√(10)√(15)+x^3√(10)√(3x)-2x^4√(5)√(15)-x^3√(5)√(3x)

Now we know that:


√(a)√(b)=√(ab)

i.e. we have:


=2x^4√(150)+x^3√(30x)-2x^4√(75)-x^3√(15x)\\\\=2x^4√(5^2\cdot 6)+x^3√(30x)-2x^4√(5^2\cdot 3)-x^3√(15x)\\\\=10x^4√(6)+x^3√(30x)-10x^4√(3)-x^3√(15x)

User PRINCESS FLUFF
by
8.0k points
4 votes

Answer:

The correct answer option is D.
10x^4√(6)+x^3√(30x)-10x^4√(3)-x^3√(15x).

Explanation:

We are given the following expression:


\left ( \sqrt { 10 x ^ 4 } -x \sqrt { 5 x ^ 2 } \right ) \left ( 2 \sqrt { 15 x ^ 4 } + \sqrt { 3 x ^ 3 } \right )

Assuming that
x\geq 0, we are to find its simplified product.


\left ( \sqrt { 10 x ^ 4 } -x \sqrt { 5 x ^ 2 } \right ) \left ( 2 \sqrt { 15 x ^ 4 } + \sqrt { 3 x ^ 3 } \right )


\\\\ = 2 \sqrt { 150 x ^ 8 } + \sqrt { 3 0 x ^ 7 }-2x√(75x^6)-x√(15x^5) \\\\ =2√(25*6x^8)+x^3√(30x)-2x√(25*3x^6)-x^3√(15x) \\\\ =10x^4√(6)+x^3√(30x)-10x^4√(3)-x^3√(15x)

User Dalvtor
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories