Answer:
Part 1)
![y=80,000(1.035)^(x)](https://img.qammunity.org/2020/formulas/mathematics/college/v5hdqtqcwbsb26peo2t68uesxt9qefi15g.png)
Part 2) The table in the attached figure
Part 3) The graph in the attached figure
Explanation:
Part 1) Find the population function
In this problem we have a exponential function of the form
![y=a(b)^(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jkgfqb7nvl6ibci3qji5d4eq7f89xi26ao.png)
where
y ----> is the population
x ----> the time in years
a is the initial value (a=80,000 people)
b is the base (b=100%+3.5%=103.5%=1.035)
substitute
Part 2) Construct the table
For x=0 years
substitute in the function equation
For x=10 years
substitute in the function equation
![y=80,000(1.035)^(10)=112.848\ people](https://img.qammunity.org/2020/formulas/mathematics/college/b92uhblwoauvkwpb15m9tyuokgoxn3raqg.png)
For x=20 years
substitute in the function equation
![y=80,000(1.035)^(20)=159,183\ people](https://img.qammunity.org/2020/formulas/mathematics/college/hwyxl5wqh8zge9t74vqq28ggqqssq6iius.png)
For x=40 years
substitute in the function equation
![y=80,000(1.035)^(40)=316,741\ people](https://img.qammunity.org/2020/formulas/mathematics/college/176tipyxib48ayym0ondcicfcu2lcmharb.png)
For x=50 years
substitute in the function equation
![y=80,000(1.035)^(50)=446,794\ people](https://img.qammunity.org/2020/formulas/mathematics/college/upo3znn4732c8fa6rh4wmkepaqaxkydat6.png)
For x=75 years
substitute in the function equation
![y=80,000(1.035)^(75)=1,055,884\ people](https://img.qammunity.org/2020/formulas/mathematics/college/i5ndml3q30myu8yfji13r27tsky79rl3zp.png)
For x=100 years
substitute in the function equation
![y=80,000(1.035)^(100)=2,495,313\ people](https://img.qammunity.org/2020/formulas/mathematics/college/6c9u68siqt6kembi54snd5ojd7t2dzz168.png)
Part 3) The graph in the attached figure