Answer:
d. (3, 7, -3)
Explanation:
The reduced row-echelon form of the augmented matrix has 1s on the diagonal and zeros off-diagonal, except for the answer in the last column. It can be convenient to start by writing the augmented matrix using the second equation first:
![\left[\begin{array}c-1&2&-3&20\\9&-4&1&-4\\4&4&-1&43\end{array}\right] \\\\\text{Add 9 times the first row to the second, and 4 times the first row to the third}\\\\\left[\begin{array}ccc-1&2&-3&20\\0&14&-26&176\\0&12&-13&123\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/yzy0uni0ikrigra8jppwlx9a3orc0utfgd.png)
![\text{Subtract 2 times the third row from the second}\\\\\left[\begin{array}ccc-1&2&-3&20\\0&-10&0&-70\\0&12&-13&123\end{array}\right] \\\\\text{Divide the second row by -10}\\\\\left[\begin{array}ccc-1&2&-3&20\\0&1&0&7\\0&12&-13&123\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/4dn9f05kvqk49awhic2f16rplmvb4c00j4.png)
![\text{Subtract 2 times the second row from the first, and}\\\text{subtract 12 times the second row from the third}\\\\\left[\begin{array}ccc-1&0&-3&6\\0&1&0&7\\0&0&-13&39\end{array}\right] \\\\\text{Divide the third row by -13}\\\\\left[\begin{array}c-1&0&-3&6\\0&1&0&7\\0&0&1&-3\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/fbd8haa741d0ip8gh4cojh18vjggjwn8gd.png)
![\text{Add 3 times the third row to the first, then multiply the result by -1}\\\\\left[\begin{array}ccc1&0&0&3\\0&1&0&7\\0&0&1&-3\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/2fejhz3bywq683geul956y71qpf6b4zadg.png)
The method may not be strictly according to some algorithm, but it avoids fractions and gives the correct result: (x, y, z) = (3, 7, -3).