Answer: Second Option
![g(x) = 2x^2 + 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kvhkl5y6bpuvwpcv89pnhh7a7cnw53y0ed.png)
Explanation:
By definition, a function f(x) is an even function if:
![f (-x) = f (x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hw5e9jsxzuowzazo2ihovfhy1tkuzzajxm.png)
This means that each input value x and its negative -x are assigned the same output value y.
To verify which of the functions is even, you must test
for each of them
First option
![g(x) = (x - 1)^2 + 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ztz400cdh09hy74zwsdahfysgbrgl257x9.png)
![g(-x) = (-x -1)^2 +1\\\\g(-x) = ((-1)(x+1))^2 +1\\\\g(-x) = (-1)^2(x+1)^2 +1\\\\g(-x) = (x+1)^2 +1\\eq g(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d8warpsycgo1tqyfee1rthyjkkoxpet6qx.png)
Second option
![g(x) = 2x^2 + 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kvhkl5y6bpuvwpcv89pnhh7a7cnw53y0ed.png)
![g(-x) = 2(-x)^2 + 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/swxsbsjsuh22nomdzej2fbm3lkmyp9kl4m.png)
![g(-x) = 2x^2 + 1=g(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qu94yvj71mkxsv8s0diw8f2zn7hgdmjpno.png)
Third option
![g(x) = 4x + 2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zdc9e2zq6q0xccmoam352hvgmlxxwnjjw2.png)
![g(-x) = 4(-x) + 2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4l091q0ckzb7sp2wtubmgfpoprnsc0r3h3.png)
![g(-x) = -4x + 2\\eq g(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/88v3s4kipb4ymqvova8zftk030ahw1mbqr.png)
Fourth option
![g(x) = 2^x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jadfi6cg2s021j57bgu1lfvcx1dg0613b2.png)
![g(-x) = 2^(-x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ojgm4i5l429i7ck7c1zuozq01q6o4h6cy9.png)
![g(-x) = (1)/(2^x)\\eq g(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2t7p7i8fv297ykxn719p8h8ic03vb9b3zu.png)