Answer:
Part 1) The x-component of the vertex is 2 and the y-component of the vertex is -18
Part 2) The discriminant is 144
Explanation:
we have
![f(x)=2x^(2)-8x-10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n2twvxmqfrpfbzipbjpgpfuukdm39d87v3.png)
step 1
Find the discriminant
The discriminant of a quadratic equation is equal to
![D=b^(2)-4ac](https://img.qammunity.org/2020/formulas/mathematics/high-school/72uu6evy9zjnstngz8re21ij3juviep3y6.png)
in this problem we have
![f(x)=2x^(2)-8x-10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n2twvxmqfrpfbzipbjpgpfuukdm39d87v3.png)
so
substitute
![D=(-8)^(2)-4(2)(-10)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5e2h85lnv4uu22vlp3n5p6ature48q9kec.png)
![D=64+80=144](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u5yxmqdt4ga81459a1qple1trx1wvodbef.png)
The discriminant is greater than zero, therefore the quadratic equation has two real solutions
step 2
Find the vertex
Convert the quadratic equation into vertex form
![f(x)+10=2x^(2)-8x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6y89wddd4h8caq5h47xb21qufmr6xzka61.png)
![f(x)+10=2(x^(2)-4x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gyca93c3fkezsbv2h5wgfwuitv4ycx4q0t.png)
![f(x)+10+8=2(x^(2)-4x+4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6mvsjizotc4r1idl8nm57g9b4ts3ahdxpz.png)
![f(x)+18=2(x-2)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2sjij987ueelinbpkfskjkfa1rsfcgtg64.png)
-----> equation in vertex form
The vertex is the point (2,-18)
therefore
The x-component of the vertex is 2
The y-component of the vertex is -18