Answer:
- 431.15 kJ/mol.
Step-by-step explanation:
- Firstly, we can calculate the amount of heat (Q) released by the solution using the relation:
Q = m.c.ΔT,
where, Q is the amount of heat released from the solution (Q = ??? J).
m is the mass of solution (m = 1.5 g + 100 g = 101.5 g).
c is the specific heat capacity of solution (c = 4.18 J/g.°C).
ΔT is the difference in T (ΔT = final temperature - initial temperature = 33.1°C - 22°C = 11.1°C).
∴ Q = m.c.ΔT = (101.5 g)(4.18 J/g.°C)(11.1°C) = 4709.4 J.
∵ ΔH = Q/n
no. of moles of Ba (n) = mass/atomic mass = (1.50 g)/(137.3270 g/mol) = 0.011 mol.
∴ ΔH = - Q/n = (4709.4 J)/(0.011 mol) = - 431.15 kJ/mol.
The negative sign is not from calculation, but it is an indication that the reaction is exothermic.