1. The four subintervals are [0, 2], [2, 3], [3, 7], and [7, 8]. We construct trapezoids with "heights" equal to the lengths of each subinterval - 2, 1, 4, and 1, respectively - and the average of the corresponding "bases" equal to the average of the values of
at the endpoints of each subinterval. The sum is then
![\frac{R(0)+R(2)}2(2-0)+\frac{R(2)+R(3)}2(3-2)+\frac{R(3)+R(7)}2(7-3)+\frac{R(7)+R(8)}2(7-8)=\boxed{24.83}](https://img.qammunity.org/2020/formulas/mathematics/high-school/kslheviscnisgy5dkbtf9m2cun8tgppku6.png)
which is measured in units of gallons, hence representing the amount of water that flows into the tank.
2. Since
is differentiable, the mean value theorem holds on any subinterval of its domain. Then for any interval
, it guarantees the existence of some
such that
![\frac{R(b)-R(a)}{b-a)=R'(c)]()
Computing the difference quotient over each subinterval above gives values of 0.275, 0.3, 0.3, and 0.26. But just because these values are non-zero doesn't guarantee that there is definitely no such
for which
. I would chalk this up to not having enough information.
3.
gives the rate of water flow, and
, so that the average rate of water flow over [0, 8] is the average value of
, given by the integral
![R_(\rm avg)=\displaystyle\frac1{8-0}\int_0^8\ln(t^2+7)\,\mathrm dt](https://img.qammunity.org/2020/formulas/mathematics/high-school/37zygremiyqipbbi0rnq1xcb5cxikhvgxk.png)
If doing this by hand, you can integrate by parts, setting
![u=\ln(t^2+7)\implies\mathrm du=(2t)/(t^2+7)\,\mathrm dt](https://img.qammunity.org/2020/formulas/mathematics/high-school/mnomxouc2w8rr8vh2nadqb2qzyf9pmenve.png)
![\mathrm dv=\mathrm dt\implies v=t](https://img.qammunity.org/2020/formulas/mathematics/high-school/5mcsuxub0s0sqbupeezzcztjyzke4qyx4i.png)
![R_(\rm avg)=\displaystyle\frac18\left(t\ln(t^2+7)\bigg|_(t=0)^(t=8)-\int_0^8(2t^2)/(t^2+7)\,\mathrm dt\right)](https://img.qammunity.org/2020/formulas/mathematics/high-school/bqnfmhd2x4t07iecy18bfo3rj6q49asucj.png)
For the remaining integral, consider the trigonometric substitution
, so that
. Then
![R_(\rm avg)=\displaystyle\ln71-\frac{\sqrt7}4\int_0^{\tan^(-1)(8/\sqrt7)}(7\tan^2s)/(7\tan^2s+7)\sec^2s\,\mathrm ds](https://img.qammunity.org/2020/formulas/mathematics/high-school/cmn2khvjye6ugxuuuirpi2pyualzg21u0k.png)
![R_(\rm avg)=\displaystyle\ln71-\frac{\sqrt7}4\int_0^{\tan^(-1)(8/\sqrt7)}\tan^2s\,\mathrm ds](https://img.qammunity.org/2020/formulas/mathematics/high-school/d4smaejg4md9a4lyl11rn8tyqtqywk0xmk.png)
![R_(\rm avg)=\displaystyle\ln71-\frac{\sqrt7}4\int_0^{\tan^(-1)(8/\sqrt7)}(\sec^2s-1)\,\mathrm ds](https://img.qammunity.org/2020/formulas/mathematics/high-school/wbn2cwh79i9bckftggohz9yhyypzkyf34n.png)
![R_(\rm avg)=\displaystyle\ln71-\frac{\sqrt7}4\left(\tan s-s\right)\bigg|_(s=0)^{s=\tan^(-1)(8/\sqrt7)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/fc2s4zg379rx9cujj8a7su4bx4s68vot0r.png)
![R_(\rm avg)=\displaystyle\ln71-\frac{\sqrt7}4\left(\tan\left(\tan^(-1)\frac8{\sqrt7}\right)-\tan^(-1)\frac8{\sqrt7}\right)](https://img.qammunity.org/2020/formulas/mathematics/high-school/btmn5q6ixyahed79mpjuwxoqzanz8ytytj.png)
![\boxed{R_(\rm avg)=\displaystyle\ln71-2+\frac{\sqrt7}4\tan^(-1)\frac8{\sqrt7}}](https://img.qammunity.org/2020/formulas/mathematics/high-school/i12wrpfr0pjeipuhbkp4nlpeswg0u6595z.png)
or approximately 3.0904, measured in gallons per hour (because this is the average value of
).
4. By the fundamental theorem of calculus,
![g'(x)=f(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/gcwo2o5qjt66tfi0qh4z1s84qw9ir5penc.png)
and
is increasing whenever
. This happens over the interval (-2, 3), since
on [-2, 0), and
on [0, 3).
5. First, by additivity of the definite integral,
![\displaystyle\int_(-2)^xf(t)\,\mathrm dt=\int_(-2)^0f(t)\,\mathrm dt+\int_0^xf(t)\,\mathrm dt](https://img.qammunity.org/2020/formulas/mathematics/high-school/e4p16eq63ux11ky8r8kugbfo8hr0yk9ty6.png)
Over the interval [-2, 0), we have
, and over the interval [0, 6],
. So the integral above is
![\displaystyle\int_(-2)^03\,\mathrm dt+\int_0^x(-t+3)\,\mathrm dt=3t\bigg|_(t=-2)^(t=0)+\left(-\frac{t^2}2+3t\right)\bigg|_(t=0)^(t=x)=\boxed{6+3x-\frac{x^2}2}](https://img.qammunity.org/2020/formulas/mathematics/high-school/7qdzoj9ao8u8ds077pjwpwe23yyrmqtz1c.png)