136k views
4 votes
Help calculus module 5 DBQ

please show work

Help calculus module 5 DBQ please show work-example-1
User JBoive
by
5.6k points

1 Answer

3 votes

1. The four subintervals are [0, 2], [2, 5], [5, 6], and [6, 7]. Their respective right endpoints are 2, 5, 6, and 7. If
C(t) denotes the change in sea level
t years after 2010, then the total sea level rise over the course of 2010 to 2017 is


\displaystyle\int_0^7C(t)\,\mathrm dt

approximated by the Riemann sum,


C(2)(2-0)+C(5)(5-2)+C(6)(6-5)+C(7)(7-6)\approx\boxed{20\,\mathrm{mm}}

2. The sum represents the definite integral


\boxed{\displaystyle\int_1^4\sqrt x\,\mathrm dx}

That is, we partition the interval [1, 4] into
n subintervals, each of width
\frac{4-1}n=\frac3n. Then we sample
n points in each subinterval, where
1+\frac{3k}n is the point used in the
kth subinterval, then take its square root.

3. The integral is trivial:


\displaystyle\int_1^4\sqrt x\,\mathrm dx=\frac23x^(3/2)\bigg|_(x=1)^(x=4)=\boxed{\frac{14}3}

4. Using the fundamental properties of the definite integral, we have


\displaystyle\int_1^4f(x)\,\mathrm dx=e^4-e\implies2\int_1^4f(x)\,\mathrm dx=2e^4-2e


\displaystyle\int_1^4(2f(x)-1)\,\mathrm dx=2e^4-2e-\int_1^4\mathrm dx=\boxed{2e^4-2e-3}

5. First note that
\sec x is undefined at
x=\frac\pi2, so the integral is improper. Recall that
(\tan x)'=\sec^2x. Then


\displaystyle\int_0^(\pi/2)\sec^2\frac xk\,\mathrm dx=\lim_(t\to\pi/2^-)\int_0^t\sec^2\frac xk\,\mathrm dx


=\displaystyle\lim_(t\to\pi/2^-)k\tan\frac xk\bigg|_(x=0)^(x=t)


=\displaystyle k\lim_(t\to\pi/2^-)\tan\frac tk


=k\tan\frac\pi{2k}

Now,


k\tan\frac\pi{2k}=k\implies\tan\frac\pi{2k}=1


\implies\frac\pi{2k}=\frac\pi4+n\pi


\implies k=\frac2{1+4n}

where
n is any integer.

User Jakob Christensen
by
5.7k points