90.9k views
3 votes
1/2x + 1/3y = 7

1/4x + 2/3y = 6

What is the solution of the system shown?

A. (1/6, 14)
B. (6, 12)
C. (10 2/3, 5)

2 Answers

1 vote

Answer:

(10 2/3,5) :)

Explanation:

User MwamiTovi
by
5.9k points
2 votes

let's multiply both sides in each equation by the LCD of all fractions in it, thus doing away with the denominator.


\begin{cases} \cfrac{1}{2}x+\cfrac{1}{3}y&=7\\\\ \cfrac{1}{4}x+\cfrac{2}{3}y&=6 \end{cases}\implies \begin{cases} \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{6}}{6\left( \cfrac{1}{2}x+\cfrac{1}{3}y \right)=6(7)}\\\\ \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{12}}{12\left( \cfrac{1}{4}x+\cfrac{2}{3}y\right)=12(6)} \end{cases}\implies \begin{cases} 3x+2y=42\\ 3x+8y=72 \end{cases} \\\\[-0.35em] ~\dotfill


\bf \stackrel{\textit{using elimination}}{ \begin{array}{llll} 3x+2y=42&* -1\implies &\begin{matrix} -3x \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~-2y=&-42\\ 3x+8y-72 &&~~\begin{matrix} 3x \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~+8y=&72\\ \cline{3-4}\\ &&~\hfill 6y=&30 \end{array}} \\\\\\ y=\cfrac{30}{6}\implies \blacktriangleright y=5 \blacktriangleleft \\\\[-0.35em] ~\dotfill


\bf \stackrel{\textit{substituting \underline{y} on the 1st equation}~\hfill }{3x+2(5)=42\implies 3x+10=42}\implies 3x=32 \\\\\\ x=\cfrac{32}{3}\implies \blacktriangleright x=10(2)/(3) \blacktriangleleft \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \left(10(2)/(3)~~,~~5 \right)~\hfill

User Cwahls
by
6.3k points