90.6k views
3 votes
Find z that is complex number : cos z = 5

1 Answer

2 votes

Recall that


\cos z=\frac{e^(iz)+e^(-iz)}2

Then


\frac{e^(iz)+e^(-iz)}2=5\implies e^(iz)+e^(-iz)=10\implies e^(2iz)-10e^(iz)+1=0

Let
\zeta=e^(iz), then


\zeta^2-10\zeta+1=0\implies\zeta=5\pm2\sqrt6

Solving back for
z gives


e^(iz)=5+2\sqrt 6\implies z=2n\pi-i\log(5+2\sqrt6)

or


e^(iz)=5-2\sqrt6\implies z=2n\pi+i\log(5-2\sqrt6)

where
n is any integer.

User Dplaza
by
5.0k points