Answer:
The domain is all real numbers. The range is y
Explanation:
we have
![f(x)=-x^(2)-2x+15](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8ssk4rxptdagte8r9vj5ki4t5ysftmfzj1.png)
This is the equation of a vertical parabola open downward
The vertex is a maximum
Find the vertex of the quadratic equation
![f(x)-15=-x^(2)-2x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/50zzxwk7vjzheu5vruemo40glpgipcnb1h.png)
![f(x)-15=-(x^(2)+2x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rj17eaq5ecv84l0fsepnqq9esid5x3h3s4.png)
![f(x)-15-1=-(x^(2)+2x+1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p1v96lyawrrj8m0w7ssuiz22ajqkhs5sby.png)
![f(x)-16=-(x^(2)+2x+1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xko8nj53b2ylyjf13feley5f5wy8if2987.png)
![f(x)-16=-(x+1)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7r45d81kcii3a40h0646f2r7h4k8l6sxmk.png)
-----> equation in vertex form
The vertex is the point (-1,16)
therefore
The domain is the interval ----> (-∞,∞) All real numbers
The range is the interval ----> (-∞,16] All real numbers less than or equal to 16