232k views
8 votes
Find the indicated limit. Note that L'Hopital's rule may not apply or may require multiple applications.

lim e^9x -1-9x/x^2
x→0

1 Answer

7 votes

Answer:

40.5

Explanation:

Given the limit of the function expressed as:


\lim_(x \to 0) (e^(9x)-1-9x)/(x^2) \\

Step 1: Substitute x = 0 into the function:


\lim_(x \to 0) (e^(9x)-1-9x)/(x^2) \\= (e^(9(0))-1-9(0))/((0)^2)\\= \frac{{1-1-0}}{0}\\= (0)/(0) (ind)

Step 2: Apply L'hopital rule


\lim_(x \to 0) (d/dx(e^(9x)-1-9x))/(d/dx(x^2)) \\= \lim_(x \to 0) ((9e^(9x)-9))/((2x))\\= ((9e^(9(0))-9))/((2(0)))\\= (9-9)/(0) \\= (0)/(0) (ind)

Step 3: Apply L'hopital rule again


\lim_(x \to 0) (d/dx(9e^(9x)-9))/(d/dx(2x))\\ = \lim_(x \to 0) (81e^(9x))/(2) \\=(81e^(0))/((2))\\= (81)/(2) \\= 40.5

Hence the limit of the function is 40.5

User RKumsher
by
6.0k points