232k views
5 votes
Find the values for a, b, and c that complete the simplification.

Find the values for a, b, and c that complete the simplification.-example-1

2 Answers

2 votes

Answer:

a = 6, b = 4, c = 2

Step-by-step explanation

see attached

Find the values for a, b, and c that complete the simplification.-example-1
User Marwen Jaffel
by
5.4k points
4 votes

Answer:

The required values are a=6, b=4 and c=2.

Explanation:

The given expression is


\sqrt{x^(12)y^(9)z^(5)}=(x^(a)y^bz^c)√(yz) .... (1)

It can be written as


\sqrt{x^(12)\cdot y^(8)\cdot y\cdot z^(4)\cdot z}


\sqrt{x^(12)\cdot y^(8)\cdot z^(4)\cdot y\cdot z}


\sqrt{(x^(6))^2\cdot (y^(4))^2\cdot (z^(2))^2\cdot y\cdot z}
[\because (a^m)^n=a^(mn)]


\sqrt{(x^(6)y^4z^2)^2\cdot y\cdot z}
[\because a^xb^x=(ab)^x]


(x^(6)y^4z^2)√(yz) .... (2)
[\because √(x^2)=x]

From (1) and (2), we get


a=6,b=4,c=2

Therefore the required values are a=6, b=4 and c=2.

User Keturah
by
5.4k points