Final answer:
To find the speed of the jet in still air and the speed of the wind, we can set up a system of equations using the given information. Solving these equations, we find that the speed of the jet in still air is 88 mph and the speed of the wind is 180 mph.
Step-by-step explanation:
To find the speed of the jet in still air and the speed of the wind, we can set up a system of equations using the given information. Let's say the speed of the jet in still air is x mph and the speed of the wind is y mph. When the jet is flying with a tailwind, the speed of the jet relative to the ground is x + y mph. We can write the equation as 1,072 = (x + y) * 4. Similarly, when the jet is flying into a headwind, the speed of the jet relative to the ground is x - y mph. We can write the equation as 848 = (x - y) * 4. Now, we can solve these two equations to find the values of x and y.
Multiplying the first equation by 4, we get 4,288 = 4x + 4y. Subtracting the second equation from this, we get 1,440 = 8y. Dividing both sides by 8, we find that y = 180. Substituting this value back into the first equation, we get 1,072 = 4x + 4 * 180. Simplifying, we get 1,072 = 4x + 720. Subtracting 720 from both sides, we find that 4x = 352. Dividing both sides by 4, we find that x = 88.
Therefore, the speed of the jet in still air is 88 mph and the speed of the wind is 180 mph.