103k views
4 votes
Can you please convert the following series into summation notation?

Write each series in summation notation beginning with k = 1.


1.
image


3.
9-16+25-36+49-64


4.
3+(3)/(2) +1+(3)/(4)+(3)/(5)

1 Answer

3 votes


\displaystyle\\1)\\\\(1)/(2)+(2)/(3)+(3)/(4)+(4)/(5)+(5)/(6)=\boxed{\sum _(k=1)^(5){(k)/(k+1)}}\\\\\\2)\\\\ -11+12-13+14-15+16=\boxed{\sum _(k=1)^(6){(-1)^k\cdot(10+k)} }


\displaystyle\\3)\\9-16+25-36+49-64=\boxed{\sum_(k=1)^(6){(-1)^(k+1)\cdot(k+2)^2}}\\\\\\4)\\\\3+(3)/(2)+1+(3)/(4)+(3)/(5)=(3)/(1)+(3)/(2)+(3)/(3)+(3)/(4)+(3)/(5)=\boxed{\sum_(k=1)^(5){(3)/(k)}}

User Tikia
by
6.5k points