Final answer:
The volume of the core of the golf ball from Great Drive, with a diameter of 1.68 inches, is approximately 2.48 cubic inches. This is calculated using the formula for the volume of a sphere with the radius derived from the given diameter. The correct answer is 2.48 in³, which is option A.
Step-by-step explanation:
The volume of a sphere is given by the formula V = (4/3) πr3, where π is pi (approximately 3.14159) and r is the sphere's radius. The diameter of the golf ball's core is given as 1.68 inches, so the radius is half of that, which is 0.84 inches. Plugging this into the formula gives us:
V = (4/3) π (0.84 inches)3 = (4/3) π (0.84 inches × 0.84 inches × 0.84 inches)
Doing the math, we find that:
V ≈ (4/3) π (0.592704 inches3) ≈ 2.48 in3
Therefore, the volume of the core of the ball rounded to the nearest hundredth is 2.48 cubic inches.
The correct answer is option A.