y - 6 = -(x + 3) and y + 2 = - (x - 5).
The line AB passes through the points A(-3, 6) and B(5, -2). Find the point-slope form.
First, we have to calculate the slope using the equation m = (y₂ - y₁)/(x₂ - x₁):
x, y
A(-3, 6)
B( 5,-2)
m = [-2 - (6)]/[5 - (-3)] = (-2 - 6)/(5 + 3)
m = -8/8
m= -1
Writing the point-slope form equation as (y - y₁) = m (x - x₁), with A(-3, 6):
y - 6 = -1[(x -(-3)]
y - 6 = - (x + 3)
Writing the point-slope form equation as (y - y₁) = m (x - x₁), with B(5, -2):
y - (-2) = - (x - 5)
y + 2 = - (x - 5)