For this case we must simplify the following expression:
![\sqrt [5] {\frac {10x} {3x ^ 3}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3jt9vcdd0hagpo17mq5td3dwb0vffgpiy3.png)
We rewrite the expression as:
![\sqrt [5] {\frac {10x} {x * 3x ^ 2}} =](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g45uxuktup3ybn46ijwmbx8nrrroswe1tv.png)
We eliminate common factors:
![\sqrt [5] {\frac {10} {3x ^ 2}} =\\\frac {\sqrt [5] {10}} {\sqrt [5] {3x ^ 2}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/geehaco0jglkgfxx0nmcc1811v3wpemm6x.png)
We multiply the numerator and denominator:
![(\sqrt [5] {3x ^ 2}) ^ 4:\\\frac {\sqrt [5] {10}} {\sqrt [5] {3x ^ 2}} * \frac {(\sqrt [5] {3x ^ 2}) ^ 4} {(\sqrt [5] {3x ^ 2}) ^ 4} =](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ep5qurzqf63o4x56997y1c8e7cr44qv2sv.png)
\frac {\ sqrt [5] {10} * (\sqrt [5] {3x ^ 2}) ^ 4} {\sqrt [5] {3x ^ 2} * (\sqrt [5] {3x ^ 2} ) ^ 4} =
![\frac {\sqrt [5] {10} * (\sqrt [5] {3x ^ 2}) ^ 4} {(\sqrt [5] {3x ^ 2}) ^ 5} =\\\frac {\sqrt [5] {10} * (\sqrt [5] {3x ^ 2}) ^ 4} {3x ^ 2} =](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q1bi2e40v18tkq0r9fut6rjh4tvtkyhc1k.png)
![\frac {\sqrt [5] {10} * \sqrt [5] {(3x ^ 2) ^ 4}} {3x ^ 2} =\\\frac {\sqrt [5] {10} * \sqrt [5] {81x ^ 8}} {3x ^ 2} =\\\frac {\sqrt [5] {10} * \sqrt [5] {81x ^ 5 * x ^ 3}} {3x ^ 2} =](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3n8dl8dbu31q434te6jk08p93qkkqjs924.png)
![\frac {\sqrt [5] {10} * x \sqrt [5] {81x ^ 3}} {3x ^ 2} =\\\frac {x \sqrt [5] {810x ^ 3}} {3x ^ 2}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sjmuoh5h530afucvtn4v9u9ngbyv271gz1.png)
Answer:
![\frac {x \sqrt [5] {810x ^ 3}} {3x ^ 2}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jif9j2ybkm1n80awkbx6cy9fqrt1t7p4i4.png)
![\frac {\sqrt [5] {810x ^ 3}} {3x}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v754vqx0nsjd4euxjewe6mvp8p9fs4a1wu.png)