43.1k views
0 votes
What is the simplified form of the following expression? assume x doesn’t = 0

What is the simplified form of the following expression? assume x doesn’t = 0-example-1
User Zsalzbank
by
5.5k points

2 Answers

2 votes

Answer:

The simplified form is
\frac{\sqrt[5]{810 x^(3)}}{3x}

Step-by-step explanation:

we need to simplify the value of x in given expression:


\sqrt[5]{(10x)/(3x^(3))}

Re- write the above as,


\sqrt[5]{(10)/(3x^(2))}


\frac{\sqrt[5]{{10}}}{\sqrt[5]{3x^(2)}}

Multiply numerator and denominator by
(\sqrt[5]{3x^(2)})^(4)


\frac{\sqrt[5]{{10}}}{\sqrt[5]{3x^(2)}} * \frac{(\sqrt[5]{3x^(2)})^(4)}{(\sqrt[5]{3x^(2)})^(4)}


\frac{\sqrt[5]{{10}}{\sqrt[5]{(3x^(2)}})^4}{{3x^(2)}}


\frac{\sqrt[5]{{10}}{\sqrt[5]{81x^(8)}}}{{3x^(2)}}


\frac{x \sqrt[5]{810 x^(3)}}{3x^(2)}


\frac{\sqrt[5]{810 x^(3)}}{3x}

Hence, the simplified form is


\frac{\sqrt[5]{810 x^(3)}}{3x}

User LilMoke
by
5.9k points
5 votes

For this case we must simplify the following expression:


\sqrt [5] {\frac {10x} {3x ^ 3}}

We rewrite the expression as:


\sqrt [5] {\frac {10x} {x * 3x ^ 2}} =

We eliminate common factors:


\sqrt [5] {\frac {10} {3x ^ 2}} =\\\frac {\sqrt [5] {10}} {\sqrt [5] {3x ^ 2}}

We multiply the numerator and denominator:


(\sqrt [5] {3x ^ 2}) ^ 4:\\\frac {\sqrt [5] {10}} {\sqrt [5] {3x ^ 2}} * \frac {(\sqrt [5] {3x ^ 2}) ^ 4} {(\sqrt [5] {3x ^ 2}) ^ 4} =

\frac {\ sqrt [5] {10} * (\sqrt [5] {3x ^ 2}) ^ 4} {\sqrt [5] {3x ^ 2} * (\sqrt [5] {3x ^ 2} ) ^ 4} =


\frac {\sqrt [5] {10} * (\sqrt [5] {3x ^ 2}) ^ 4} {(\sqrt [5] {3x ^ 2}) ^ 5} =\\\frac {\sqrt [5] {10} * (\sqrt [5] {3x ^ 2}) ^ 4} {3x ^ 2} =


\frac {\sqrt [5] {10} * \sqrt [5] {(3x ^ 2) ^ 4}} {3x ^ 2} =\\\frac {\sqrt [5] {10} * \sqrt [5] {81x ^ 8}} {3x ^ 2} =\\\frac {\sqrt [5] {10} * \sqrt [5] {81x ^ 5 * x ^ 3}} {3x ^ 2} =


\frac {\sqrt [5] {10} * x \sqrt [5] {81x ^ 3}} {3x ^ 2} =\\\frac {x \sqrt [5] {810x ^ 3}} {3x ^ 2}

Answer:


\frac {x \sqrt [5] {810x ^ 3}} {3x ^ 2}


\frac {\sqrt [5] {810x ^ 3}} {3x}

User Khayam Khan
by
5.6k points