ANSWER
Relative minimum occurs at x=0
Relative maximum occurs at x=-2
EXPLANATION
The given function is;
![f(x) = 3 {x}^(3) + 9 {x}^(2) - 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/et2bssxjb45x0wptsb3et101rhu0kjz5eh.png)
We take the first derivative to get:
![f'(x) = 9 {x}^(2) + 18x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n9xcnwtau41lj57x3r3kwykd9v3y8194qg.png)
At turning point f'(x)=0
![9 {x}^(2) + 18x = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bakgijo43yeiad58d3t7ymfwocbi4govyj.png)
![9x(x + 2) = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hwhv7saqovvauz8nw5bv2aeioysjxh8vxs.png)
![x = 0 \: or \: x = - 2](https://img.qammunity.org/2020/formulas/mathematics/high-school/xig7jlsi0u6ijy48pfbg1aqh5h73c3665b.png)
We take the second derivative to get
![f''(x) = 18x + 18</p><p>](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6rn6dnq78p39ztxgjsjjgb024p31ccacho.png)
![f''(0) = 18(0) + 18 = 18 \: > \: 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tmxhph0iz9miml9lc9shwhxqg990di1l7b.png)
Relative minimum occurs at x=0
![f''( - 2) = 18( - 2)+ 18 = - 18 \: < \: 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/53lxt049pr4cx94c513rxrweg5zjzby0rx.png)
Relative maximum occurs at x=-2