Answer:
B)
![(x^2 - 5x + 13) +(x^2 + 3x - 6)\\](https://img.qammunity.org/2020/formulas/mathematics/middle-school/49tdqkyvghw22jzgo67pivdpwv67g7mu8a.png)
Explanation:
Let's simplify the given options and find the correct answer.
The given expression is
![2x^2 - 2x + 7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c7h8h5tywl4kuxgh5so67u0hs8gx7yox5p.png)
Let's take the option A and simplify.
![-(4x + 12) + (2x^2 - 6x + 5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7gv448x7wtq9bm28wbmpqh3pdjezmupqz1.png)
Distributing the negative sign and simplify.
![-4x - 12 + 2x^2 -6x + 5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gwqms61l2edienp7e9j0kpx5ohmnzd70rm.png)
Simplify the like terms.
![2x^2 -10x - 7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7y8lubq2bx46w3c9yhrwrx7kyvd2j5ke2d.png)
Which is not equal to the given expression.
Let's take the option B and simplify.
![(x^2 - 5x + 13) +(x^2 + 3x - 6)\\](https://img.qammunity.org/2020/formulas/mathematics/middle-school/49tdqkyvghw22jzgo67pivdpwv67g7mu8a.png)
Simplify the like terms, we get
![x^2 + x^2 -5x +3x +13 -6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h35ig3jg0wkc26rojwu8d1c59vpuj5mh9n.png)
![2x^2 -2x +7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c1yvdmpum0nzcltathsdznnwjtopuanb8e.png)
Which is equal to the given expression
![2x^2 -2x +7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c1yvdmpum0nzcltathsdznnwjtopuanb8e.png)
Therefore, the answer is B)
![(x^2 - 5x + 13) +(x^2 + 3x - 6)\\](https://img.qammunity.org/2020/formulas/mathematics/middle-school/49tdqkyvghw22jzgo67pivdpwv67g7mu8a.png)