60.6k views
0 votes
A child throws a ball with an initial speed of 8.00 m/s at an angle of 40.0° above the horizontal. The ball leaves her hand 1.00 m above the ground. What is the magnitude of the ball's velocity just before it hits the ground?

User Erubiel
by
4.3k points

1 Answer

4 votes

The ball's position vector has components


x=\left(8.00(\rm m)/(\rm s)\right)\cos40.0^\circ t


y=1.00\,\mathrm m+\left(8.00(\rm m)/(\rm s)\right)\sin40.0^\circ t-\frac g2t^2

where
g=9.80(\rm m)/(\mathrm s^2) is the acceleration due to gravity. The ball hits the ground when
y=0:


0=1.00\,\mathrm m+\left(8.00(\rm m)/(\rm s)\right)\sin40.0^\circ t-\frac g2t^2\implies t=1.22\,\mathrm s

The ball's velocity vector has components


v_x=\left(8.00(\rm m)/(\rm s)\right)\cos40.0^\circ


v_y=\left(8.00(\rm m)/(\rm s)\right)\sin40.0^\circ-gt

so that after 1.22 s, the velocity vector is


\vec v=(6.13\,\vec\imath-6.79\,\vec\jmath)(\rm m)/(\rm s)

and the magnitude is


\|\vec v\|=√(6.13^2+(-6.79)^2)\,(\rm m)/(\rm s)=\boxed{9.14(\rm m)/(\rm s)}

User Itsafire
by
5.6k points