178k views
5 votes
Evaluate the surface integral ∫∫s F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i + y j + 10 k. S is the boundary of the region enclosed by the cylinder x2 + z2 = 1 and the planes y = 0 and x + y = 8.

User Elbek
by
6.2k points

1 Answer

4 votes

Use the divergence theorem.


\vec F(x,y,z)=x\,\vec\i\math+y\,\vec\jmath+10\,\vec k\implies\\abla\cdot\vec F(x,y,z)=(\partial(x))/(\partial x)+(\partial(y))/(\partial y)+(\partial(10))/(\partial z)=2

The div theorem says the integral of
\vec F across
S is equal to the integral of
\\abla\cdot\vec F over the region with boundary
S (call it
R):


\displaystyle\iint_S\vec F(x,y,z)\cdot\mathrm d\vec S=\iiint_R(\\abla\cdot\vec F(x,y,z))\,\mathrm dx\,\mathrm dy\,\mathrm dz


=\displaystyle2\iiint_R\mathrm dx\,\mathrm dy\,\mathrm dz

Convert to cylindrical coordinates:


\begin{cases}x=r\cos\theta\\y=y\\z=r\sin\theta\end{cases}\implies\mathrm dx\,\mathrm dy\,\mathrm dz=r\,\mathrm dr\,\mathrm d\theta\,\mathrm dy

Then the integral is


=\displaystyle2\int_0^(2\pi)\int_0^1\int_0^(8-r\cos\theta)r\,\mathrm dy\,\mathrm dr\,\mathrm d\theta=\boxed{16\pi}

User Tejus Prasad
by
5.4k points