Answer:
option b
Explanation:
We are given that
be an even function
We have to find the value of C for which given function is even function
We know that sin x is odd function and cos is even function
Odd function : when f(x)
then the function is called an odd function.
Even function : When f(x)=f(-x) then the function is called an even function.
Sin(-x)=-Sin x
Cos (-x)= Cos x
When we take C=
![2\pi](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ia5d2u08w0ivg4tfm7kmao3az9h7oxlde3.png)
Then , y=Sin
![(x)/(2)-(2\pi)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dvrcr4on1656a6d2chzgtrvu1f4njo443v.png)
y=
![sin((x)/(2)-\pi)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ktto5yro740soid2e1uu035z4d5lpb83o7.png)
(
)
When x is replace by -x
Then, we get
![y=-sin(-(x)/(2))=sin(x)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6nqhedsr63ggtnx4qfufzpa19vmtydl15j.png)
![f(-x)\\eq f( x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f6f6yzxlwhwsxn1w88z47rpsa3gdl500jp.png)
Hence, option a is false.
b.C=
![\pi](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hvs09vob5j95u9hspf0ge6sceeo00vgyv4.png)
![y= sin ((x)/(2)-(\pi)/(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gqlx28mv8593wbldwsdawvm6jd4e5heel6.png)
![y=-sin((\pi)/(2)-(x)/(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h020scp60xwlts75igkpl0wbfk44g8sy9z.png)
![y=-cos (x)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/orzn3p1xd005mupy5h6xha54kfilbc4bfj.png)
When x is replaced by -x then we get
![y=-cos (-(x)/(2))=- cos (x)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/muzdja76nqbaphlh47lqjjridmj7v2gufc.png)
f(x)=f(-x) , Therefore, function is even,hence option b is true.
c.C=
![(\pi)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/1cp5pyy2fhqgbtctn9nkwdiqwed2mh4qai.png)
![y=sin ((x)/(2)-(\pi)/(4))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cpsxvahtvk9juxxiwy88qpectn4epi4evq.png)
![Sin (A-B)=Sin A Cos B- Sin B Cos A](https://img.qammunity.org/2020/formulas/mathematics/middle-school/60v2s16hzgl2ynmgxpoxkw51ofwmfxo4yu.png)
![[y= sin (x)/(2) cos {(\pi)/(4)-cos(x)/(2) sin(\pi)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9p32i8wapy5vky9xf3ghmomlqwmbvevajr.png)
![sin(\pi)/(4)= cos (\pi)/(4)=(1)/(\sqrt2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4oackka0zi6fcnla6ioane9e8bpg471jth.png)
![y=(1)/(\sqrt2)(sin (x)/(2)- cos (x)/(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c6ectyo9syuqmjx264dvpigvc452o6al4d.png)
When x is replaced by -x then we get
![y=(1)/(\sqrt2)(-sin(x)/(2)-cos (x)/(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n1xayuylowpo7vezafpv87y8wcfkpyeemk.png)
![f(x)\\eq f(-x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sre7gj1b0m58mti4kpijmsfuxrdjkt6c7w.png)
Hence, function is odd .Therefore, option c is false.