18.9k views
5 votes
Find the sum of the infinite geometric series, if it exists.

4 - 1 + 1/4 - 1/16 + . . .

a. -1

b. 16/5

c. 3

d. does not exist

1 Answer

3 votes

So the series looks something like this:


\Sigma_(n=4)^(\infty)(n-1)/(16) \\</p><p>(1)/(16)\Sigma_(n=4)^(\infty)n-1

If
\lim_(n\rightarrow\infty)\\eq than
\Sigma{a_n} diverges. So we must apply limit infinity property:


\lim_(n\rightarrow\infty)(ax^n+\dots+bx+c)=\infty, a>0 and n is odd.

So...


\lim_(n\rightarrow\infty)n-1=\infty

The series diverges.

Hope this helps.

r3t40

User Ted Dunning
by
6.8k points

No related questions found