221k views
5 votes
Use the Polynomial Identity below to help you create a list of 10 Pythagorean Triples:

(
x^(2)+
y^(2))
^(2)=(
x^(2)-
y^(2))
^(2)+(2xy)
^(2)
Hint #1: c² = a² + b²
Hint #2: pick 2 positive integers x and y, where x > y

1 Answer

4 votes

Answer:

See explanation

Explanation:

You are given the equality


(x^2+y^2)^2=(x^2-y^2)^2+(2xy)^2

where x, y are two positive integers with x>y.

1. x=2,y=1, then


c=x^2+y^2=2^2+1^2=5\\ \\a=x^2-y^2=2^2-1^2=3\\ \\b=2xy=2\cdot 2\cdot 1=4

First Pythagorean triple is (3,4,5)

2. x=3,y=1, then


c=x^2+y^2=3^2+1^2=10\\ \\a=x^2-y^2=3^2-1^2=8\\ \\b=2xy=2\cdot 3\cdot 1=6

Second Pythagorean triple is (6,8,10)

3. x=3,y=2, then


c=x^2+y^2=3^2+2^2=13\\ \\a=x^2-y^2=3^2-2^2=5\\ \\b=2xy=2\cdot 3\cdot 2=12

Third Pythagorean triple is (5,12,13)

4. x=4,y=1, then


c=x^2+y^2=4^2+1^2=17\\ \\a=x^2-y^2=4^2-1^2=15\\ \\b=2xy=2\cdot 4\cdot 1=8

Fourth Pythagorean triple is (8,15,17)

5. x=4,y=2, then


c=x^2+y^2=4^2+2^2=20\\ \\a=x^2-y^2=4^2-2^2=12\\ \\b=2xy=2\cdot 4\cdot 2=16

Fifth Pythagorean triple is (12,16,20)

6. x=4,y=3, then


c=x^2+y^2=4^2+3^2=25\\ \\a=x^2-y^2=4^2-3^2=7\\ \\b=2xy=2\cdot 4\cdot 3=24

Sixth Pythagorean triple is (7,24,25)

7. x=5,y=1, then


c=x^2+y^2=5^2+1^2=26\\ \\a=x^2-y^2=5^2-1^2=24\\ \\b=2xy=2\cdot 5\cdot 1=10

Seventh Pythagorean triple is (10,24,26)

8. x=5,y=2, then


c=x^2+y^2=5^2+2^2=29\\ \\a=x^2-y^2=5^2-2^2=21\\ \\b=2xy=2\cdot 5\cdot 2=20

8th Pythagorean triple is (20,21,29)

9. x=5,y=3, then


c=x^2+y^2=5^2+3^2=34\\ \\a=x^2-y^2=5^2-3^2=16\\ \\b=2xy=2\cdot 5\cdot 3=30

9th Pythagorean triple is (16,30,34)

10. x=5,y=4, then


c=x^2+y^2=5^2+4^2=41\\ \\a=x^2-y^2=5^2-4^2=9\\ \\b=2xy=2\cdot 5\cdot 4=40

10th Pythagorean triple is (9,40,41)

User Mfruizs
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories