84.0k views
1 vote
. Need help !!! on 2 math questions

The height in feet of a ball dropped from a 150 ft. Building is given by h(t) = –16t2 + 150, where t is the time in seconds after the ball is dropped. Find h(2) and interpret its meaning. Round your answer to the nearest hundredth.

A. h(2) = 86.00 means that after 2 seconds, the height of the ball is 86.00 ft.


B. h(2) = 3.04 means that after 2 seconds, the height of the ball has dropped by 3.04 ft.


C. h(2) = 3.04 means that after 2 seconds, the height of the ball is 3.04 ft.


D. h(2) = 86.00 means that after 2 seconds, the height of the ball has dropped by 86.00 ft.


15. The perimeter of a triangle is 69 cm. The measure of the shortest side is 5 cm less than the middle side. The measure of the longest side is 5 cm less than the sum of the other two sides. Find the lengths of the sides.


A. 16 cm; 21 cm; 32 cm


B. 15 cm; 21 cm; 33 cm


C. 15 cm; 22 cm; 32 cm


D. 17 cm; 21 cm; 31 cm

User SingleShot
by
4.5k points

1 Answer

5 votes

Answer:

Part 1) Option A. h(2) = 86.00 means that after 2 seconds, the height of the ball is 86.00 ft.

Part 2) Option A. 16 cm; 21 cm; 32 cm

Explanation:

Part 1)

we have


h(t)=-16t^(2)+150

where

t ----> is the time in seconds after the ball is dropped

h(t) ----> he height in feet of a ball dropped from a 150 ft

Find h(2)

That means ----> Is the height of the ball 2 seconds after the ball is dropped

Substitute the value of t=2 sec in the equation


h(2)=-16(2)^(2)+150=86\ ft

therefore

After 2 seconds, the height of the ball is 86.00 ft.

Part 2) The perimeter of a triangle is 69 cm. The measure of the shortest side is 5 cm less than the middle side. The measure of the longest side is 5 cm less than the sum of the other two sides. Find the lengths of the sides

Let

x----> the measure of the shortest side

y ----> the measure of the middle side

z-----> the measure of the longest side

we know that

The perimeter of the triangle is equal to

P=x+y+z

P=69 cm

so

69=x+y+z -----> equation A

x=y-5 ----> equation B

z=(x+y)-5 ----> equation C

substitute equation B in equation C

z=(y-5+y)-5

z=2y-10 -----> equation D

substitute equation B and equation D in equation A and solve for y

69=(y-5)+y+2y-10

69=4y-15

4y=69+15

4y=84

y=21 cm

Find the value of x

x=21-5=16 cm

Find the value of z

z=2(21)-10=32 cm

The lengths of the sides are 16 cm, 21 cm and 32 cm

User Alaeddin AL Zeybek
by
5.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.