Answer:
Option B) y=4/5x
Explanation:
we know that
A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form
or
In a proportional relationship the constant of proportionality k is equal to the slope m of the line and the line passes through the origin
we have that
case A) y=x+4/5
The line does not passes through the origin, is not a proportional relationship
case B) y=(4/5)x
The line passes through the origin ---->represents a proportional relationship
The slope m is equal to the constant of proportionality k
The slope m=4/5
therefore
The line y=4/5x
Represents a proportional relationship that has a constant of proportionality equal to 4/5
case C) xy=4/5
Represent an inverse variation is not a proportional relationship
case D) x+y=(4/5)
The line does not passes through the origin, is not a proportional relationship