Answer:
Two solutions were found :
x = 6
x = 0
Explanation:
Reformatting the input :
Changes made to your input should not affect the solution:
(1): "x2" was replaced by "x^2".
Step by step solution :
Step 1 :
Equation at the end of step 1 :
32x2 - 54x = 0
Step 2 :
Step 3 :
Pulling out like terms :
3.1 Pull out like factors :
9x2 - 54x = 9x • (x - 6)
Equation at the end of step 3 :
9x • (x - 6) = 0
Step 4 :
Theory - Roots of a product :
4.1 A product of several terms equals zero.
When a product of two or more terms equals zero, then at least one of the terms must be zero.
We shall now solve each term = 0 separately
In other words, we are going to solve as many equations as there are terms in the product
Any solution of term = 0 solves product = 0 as well.
Solving a Single Variable Equation :
4.2 Solve : 9x = 0
Divide both sides of the equation by 9:
x = 0
Solving a Single Variable Equation :
4.3 Solve : x-6 = 0
Add 6 to both sides of the equation :
x = 6