Answer:
226 teams
Explanation:
A team can be:
- 5 girls
- 4 girls and 1 boy
- 3 girls and 2 boys
- 2 girls and 3 boys
Count all combinations:
1. 5 girls from 5 girls can be chosen in 1 way.
2. 4 girls from 5 girls can be chosen in
![C^5_4=(5!)/(4!(5-4)!)=(1\cdot 2\cdot 3\cdot 4\cdot 5)/(1\cdot 2\cdot 3\cdot 4\cdot 1)=5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/975yvfn8mhz8i1m27yz7i2fso8a91itvyk.png)
different ways and 1 boy from 5 boys can be chosen in
![C^5_1=(5!)/(1!(5-1)!)=(5!)/(1!\cdot 4!)=(1\cdot 2\cdot 3\cdot 4\cdot 5)/(1\cdot 2\cdot 3\cdot 4\cdot 1)=5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fw0l7ivhcd9owj4n6et9iq74eeje1fgyzv.png)
different ways, so in total,
![5\cdot 5=25](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tna896c0xvi8srsxajnlsbnniozb9vmazi.png)
different combinations.
3. 3 girls from 5 girls can be chosen in
![C^5_3=(5!)/(3!(5-3)!)=(5!)/(3!\cdot 2!)=(1\cdot 2\cdot 3\cdot 4\cdot 5)/(1\cdot 2\cdot 3\cdot 1\cdot 2)=10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sb6v9uw22unwcnzd39l3i0ozf22hs6zgs9.png)
different ways and 2 boys from 5 boys can be chosen in
![C^5_2=(5!)/(2!(5-2)!)=(5!)/(2!\cdot 3!)=(1\cdot 2\cdot 3\cdot 4\cdot 5)/(1\cdot 2\cdot 1\cdot 2\cdot 3)=10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s898ujt44do6wk9zbthk7xttlpfz3clmyx.png)
different ways, so in total,
![10\cdot 10=100](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lhurydt80ixcwea741l5gtx81x0dwg21lw.png)
different combinations.
4. 2 girls from 5 girls can be chosen in
![C^5_2=(5!)/(2!(5-2)!)=(5!)/(2!\cdot 3!)=(1\cdot 2\cdot 3\cdot 4\cdot 5)/(1\cdot 2\cdot 1\cdot 2\cdot 3)=10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s898ujt44do6wk9zbthk7xttlpfz3clmyx.png)
different ways and 3 boys from 5 boys can be chosen in
![C^5_3=(5!)/(3!(5-3)!)=(5!)/(3!\cdot 2!)=(1\cdot 2\cdot 3\cdot 4\cdot 5)/(1\cdot 2\cdot 3\cdot 1\cdot 2)=10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sb6v9uw22unwcnzd39l3i0ozf22hs6zgs9.png)
different ways, so in total,
![10\cdot 10=100](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lhurydt80ixcwea741l5gtx81x0dwg21lw.png)
different combinations.
In total, there are
possible teams.