Answer:
The height of the cone is
![48\ in](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lbpfumnyuyte696ymw8c24n0ru2rfqll59.png)
Explanation:
step 1
Find the radius of the base of cone
we know that
The volume of the cone is equal to
![V=(1)/(3)\pi r^(2) h](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3e7oicl0qo3t8demcjhajan9gazt73j4u8.png)
we have
![V=12,288\pi\ in^(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/xr03giippljkmou73kfyl8npfz2qqyrmx1.png)
---> remember that the vertex angle of the vertical cross section is 60 degrees
so
![r=(h)(√(3))/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/zt75rtfnfn9qlom6avaijx5mzm9tfvryif.png)
substitute the values and solve for h
![12,288\pi=(1)/(3)\pi ((h)(√(3))/(3))^(2) h](https://img.qammunity.org/2020/formulas/mathematics/high-school/tutl6cpr675mx47928od1nmrhh5dr1vgck.png)
![36,864=(h^(3))/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/gddhibv5j0ansvddbmqpge1uec55z6mdiz.png)
![h^(3)=110,592](https://img.qammunity.org/2020/formulas/mathematics/high-school/mn9bmi6r4hyvr92ldxo1ds4vfa3s07wy22.png)
![h=48\ in](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1l7h6dzzfg6wmch7atkp81xo8w0swy1lia.png)