229k views
3 votes
Y=4x^{2 -4x+9 Find the x-intercepts for the parabola

User Ccellar
by
7.6k points

1 Answer

4 votes

Answer: The parabola does not intercept the x-axis.

Explanation:

The parabola intercepts the x-axis when
y=0, then, you need to substitute
y=0 into the equation:


y=4x^2 -4x+9\\0=4x^2 -4x+9

Now, use the Quadratic formula:


x=(-b\±√(b^2-4ac))/(2a)

In this case:


a=4\\b=-4\\c=9

Substituting these values and evaluating, you get:


x=(-(-4)\±√((-4)^2-4(4)(9)))/(2(4))\\\\x=(4\±√(-128))/(8)

Remeber that:


√(-1)=i

Then, rewriting:


x=(4\±8i√(2))/(8)

Simplifying:


x=(4(1\±2i√(2))/(4(2))\\\\x=(1\±2i√(2))/(2)\\\\x=(1)/(2)\±(2i√(2))/(2)\\\\x=(1)/(2)\±i√(2)

Then:


x_1=(1)/(2)+i√(2)


x_2=(1)/(2)-i√(2)

The roots are complex, therefore, the parabola does not intercept the x-axis.

User Alessioalex
by
7.5k points