ANSWER
Domain: All real numbers
Range:
![[2, \infty )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kpls0ym3m65wex70ktt18lzu7yk2w3f4jo.png)
EXPLANATION
The given function is
![y = 3 {x}^(2) - 6x + 5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cvyru5pysh4cdjf3gxe8eeildf6l2yb5po.png)
To find the domain and range of the given function, we complete the square.
![y = 3 ({x}^(2) - 2x )+ 5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/l7ati0xwbd3ual9eoxx9vr8oqfwt4gx4f1.png)
![y = 3 ({x}^(2) - 2x + 1) + 3( - 1)+ 5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n4qta9222npanhzvxdxeso2l7z8mbtk6fg.png)
![y = 3 ({x - 1)}^(2) - 3+ 5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m02pgydi0i7x49d91caknuaqzu17xmnv17.png)
![y = 3 ({x - 1)}^(2) + 2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tw8ea1ky0blezvzdasnhsfxt9fbn7vb1ql.png)
The vertex is at (1,2).
The given function is a polynomial and all polynomial functions are defined everywhere.
The domain is all real numbers.
The parabola opens upwards and have vertex at (1,2). Hence the minimum y-value is 2.
The range is
![[2, \infty )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kpls0ym3m65wex70ktt18lzu7yk2w3f4jo.png)