152k views
4 votes
Find exact solution of


\cos( {2x - (\pi)/(2) })^(2) = 1 - \sin(2x - (\pi)/(2) )
for

0 \leqslant x \leqslant 3\pi


User Spiderix
by
8.7k points

1 Answer

4 votes

For starters, let
y=2x-\frac\pi2.

Then


\cos^2y=1-\sin y


1-\sin^2y=1-\sin y


\sin^2y-\sin y=0


\sin y(\sin y-1)=0

so either


\sin y=0\implies y=n\pi

or


\sin y-1=0\implies\sin y=1\implies y=\frac\pi2+2n\pi

for integers
n. Solving for
x gives us


2x-\frac\pi2=\frac\pi2+2n\pi\implies x=\frac\pi2+n\pi

or


2x-\frac\pi2=n\pi\implies x=\frac\pi4+\frac{n\pi}2

We get the following solutions for
0\le x\le3\pi:


x=\frac\pi2,\frac{3\pi}2,\frac{5\pi}2

or


x=\frac\pi4,\frac{3\pi}4,\frac{5\pi}4,\frac{7\pi}4,\frac{9\pi}4,\frac{11\pi}4

User Udani
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories