152k views
4 votes
Find exact solution of


\cos( {2x - (\pi)/(2) })^(2) = 1 - \sin(2x - (\pi)/(2) )
for

0 \leqslant x \leqslant 3\pi


User Spiderix
by
9.1k points

1 Answer

4 votes

For starters, let
y=2x-\frac\pi2.

Then


\cos^2y=1-\sin y


1-\sin^2y=1-\sin y


\sin^2y-\sin y=0


\sin y(\sin y-1)=0

so either


\sin y=0\implies y=n\pi

or


\sin y-1=0\implies\sin y=1\implies y=\frac\pi2+2n\pi

for integers
n. Solving for
x gives us


2x-\frac\pi2=\frac\pi2+2n\pi\implies x=\frac\pi2+n\pi

or


2x-\frac\pi2=n\pi\implies x=\frac\pi4+\frac{n\pi}2

We get the following solutions for
0\le x\le3\pi:


x=\frac\pi2,\frac{3\pi}2,\frac{5\pi}2

or


x=\frac\pi4,\frac{3\pi}4,\frac{5\pi}4,\frac{7\pi}4,\frac{9\pi}4,\frac{11\pi}4

User Udani
by
8.5k points

No related questions found