The question is incomplete, here is a complete question.
Triangle FGH is an isosceles right triangle with a hypotenuse that measures 16 units. An altitude, GJ, is drawn from the right angle to the hypotenuse.
What is the length of GJ?
A. 2 units
B. 4 units
C. 6 units
D. 8 units
Answer : The correct option is, (D) 8 units
Step-by-step explanation :
Given:
Length FH = 16 unit
As we know that a altitude between the two equal legs of an isosceles triangle creates right angles is a angle and opposite side bisector.
Thus,
Length FJ = Length HJ =
= 8 units
As, the triangle is an isosceles. So, length GF = length GH = x unit
First we have to determine the value of 'x'.
Using Pythagoras theorem in ΔFGH :
![(Hypotenuse)^2=(Perpendicular)^2+(Base)^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/nuhyb0teqpx65r7s5ri7yj0t4wqlnrvj8l.png)
![(FH)^2=(GF)^2+(GH)^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n8k36na1x2ef48gjb0cfb9mcxiwmbfgmy2.png)
Now put all the values in the above expression, we get :
![(16)^2=(x)^2+(x)^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fypebfs8hkhgno1qc1yxy5usdq8h8r1ysw.png)
![256=2x^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/376idx1dqcocy1leubghsjt39t77vxlk8g.png)
![x^2=128](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pdj9rmtsa7sb4uhxjpe2gn56miopmf0jry.png)
![x=8√(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/toul848f0a6pmevkqjmp1d4dfdtmzsp9zp.png)
Thus, length GF = length GH = x unit =
![8√(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/sm3aomrefcr214zs7euaf9td9vbipwy4vh.png)
Now we have to determine the length GJ.
Using Pythagoras theorem in ΔGJH :
![(Hypotenuse)^2=(Perpendicular)^2+(Base)^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/nuhyb0teqpx65r7s5ri7yj0t4wqlnrvj8l.png)
![(GH)^2=(GJ)^2+(HJ)^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yzfyns2ljgbd5ci8lar006wkno7pclxas1.png)
Now put all the values in the above expression, we get :
![(8√(2))^2=(GJ)^2+(8)^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/j7w0xgstl8v9yfztg54nltgd1lija18fsr.png)
![128=(GJ)^2+64](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o28n0c0gauqw4gy6m2ehutwhb7lnr2u1zr.png)
![(GJ)^2=128-64](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kprtsgwz9ptfdvwncnkuhm0rdm5ts9izwt.png)
![(GJ)^2=64](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lnkulsl71x9stol31vbp2trlxs4mqy8umt.png)
![GJ=√(64)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ushqiskahcz3i0xzutn0lfr1mcywme4vrv.png)
![GJ=8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xmd0dueysoieqofje007bomk7rfrxyc7nk.png)
Thus, the length of GJ is, 8 units.