41.1k views
0 votes
An equation is given. (Enter your answers as a comma-separated list. Let k be any integer. Round terms to three decimal places where appropriate. If there is no solution, enter NO SOLUTION.) 3 tan(3θ) − 1 = 0 (b) Find the solutions in the interval [0, 2π).

1 Answer

3 votes


3\tan3\theta-1=0


3\tan3\theta=1


\tan3\theta=\frac13

Recall that the tangent function has a period of
\pi so that


3\theta=\tan^(-1)\frac13+k\pi

for any integer
k. Then


\theta=\frac13\tan^(-1)\frac13+\frac{k\pi}3

We get 6 solutions in the interval [0, 2π) for
0\le k\le5,


\theta\approx0.107


\theta\approx1.154


\theta\approx2.202


\theta\approx3.249


\theta\approx4.296


\theta\approx5.343

User Ben Hymers
by
4.8k points