76.5k views
11 votes

r = \frac{a { }^(2) + 2a - 7 }{ √(a) }

differentiate this using the quotient rule




1 Answer

1 vote

Answer:


(dr)/(da) = \frac{3a^2 + 2a + 7}{2a^{(3)/(2) }}

General Formulas and Concepts:

Pre-Algebra

  • Distributive Property

Algebra I

  • Expand by FOIL (First Outside Inside Last)
  • Terms/Coefficients/Degrees

Algebra II

  • Exponential Rule:
    x^(-m)= (1)/(x^m)
  • Exponential Rule:
    √(x) = x^{(1)/(2) }

Calculus

Derivatives

Derivative Notation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule:
\displaystyle (d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))

Explanation:

Step 1: Define


r = (a^2+2a-7)/(√(a))

Step 2: Rewrite


r = \frac{a^2+2a-7}{a^{(1)/(2) }}

Step 3: Differentiate

  1. Quotient Rule [Basic Power:
    (dr)/(da) = \frac{a^{(1)/(2) }(2a^(2-1) + 2a^(1-1)) - (1)/(2)a^{(1)/(2) - 1 }(a^2 + 2a + 7)}{(a^{(1)/(2) })^2}
  2. Simplify:
    (dr)/(da) = \frac{a^{(1)/(2) }(2a + 2) - (1)/(2)a^{-(1)/(2)}(a^2 + 2a + 7)}{a}
  3. Simplify:
    (dr)/(da) = (2)/(2) \cdot \frac{a^{(1)/(2) }(2a + 2) - (1)/(2)a^{-(1)/(2)}(a^2 + 2a + 7)}{a}
  4. Multiply:
    (dr)/(da) = \frac{2a^{(1)/(2) }(2a + 2) - a^{-(1)/(2)}(a^2 + 2a + 7)}{2a}
  5. Factor:
    (dr)/(da) = \frac{a^{-(1)/(2)}[2a(2a + 2) - (a^2 + 2a + 7)]}{2a}
  6. [Brackets] Distribute:
    (dr)/(da) = \frac{a^{-(1)/(2)}[4a^2 + 4a - a^2 - 2a - 7]}{2a}
  7. [Brackets] Combine Like Terms:
    (dr)/(da) = \frac{a^{-(1)/(2)}[3a^2 + 2a - 7]}{2a}
  8. Simplify:
    (dr)/(da) = \frac{3a^2 + 2a + 7}{2a^{(3)/(2) }}
User Mangokitty
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories