Answer:
![\left[\begin{array}{ccc}3&0&0\\0&3&0\\0&0&3\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fbha8d1z65wsiqjaut9ttgqdgzkqpf55zz.png)
Explanation:
In order to find out the resulting matrix, we will have to multiply the identity matric and the scalar 3:
The 3x3 identity matrix is:
![\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5m9qb250zfst8zd3f1s51szfyqbzppyhu7.png)
Multiplying with scalar 3:
![3\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5v4l013ektd21h5a9cb1l65egk5s6rjv2p.png)
The scalar will be multiplied by each element of the matrix.
Multiplying zeros with scalar 3 will give us zero. So the resulting matrix will be:
![\left[\begin{array}{ccc}3*1&0&0\\0&3*1&0\\0&0&3*1\end{array}\right] = \left[\begin{array}{ccc}3&0&0\\0&3&0\\0&0&3\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g8samzlqk2777pplj6xw5w7jd06jfcesgv.png)
So the resultant matrix will be a scalar matrix with 3 at diagonal positions..