ANSWER
EXPLANATION
The given trigonometric equation is:
![2 \cos( \theta) - 1 = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/l4kvkgdy3ltgpegg1azgm9d3n1ndnzikoh.png)
![\implies \: 2 \cos( \theta) = 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/is3jo2g4zumkozg4nidq6i5lo1yowgsvrg.png)
![\implies \: \cos( \theta) = (1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yc7p7d68w5sm5b9n3evalsbs9kp7wao58x.png)
The cosine ratio is positive in the first and fourth quadrants.
In the first quadrant,
![\theta = \cos ^( - 1) ( (1)/(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5gj7z0zr1pz94y3c4n30x1579ojs392zzq.png)
![\theta = (\pi)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/un6g7009l21u2dltr6wt34ids89j3vb5lb.png)
In the fourth quadrant,
![\theta =2 \pi - \cos ^( - 1) ( (1)/(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/64ml5n3t9w1wd3uwj3d590cbu48lz406l7.png)
![\theta =2 \pi - (\pi)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7tyw7hg1a1kpnf3f46usht64qrz9fgwfq7.png)
![\theta = (5\pi)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zwvvx9x81ovnq0kcgbp6hvkpmy910fbjzh.png)
Therefore on the interval, [0,2π] the solution to the given trigonometric equation is:
![\theta = (\pi)/(3) \: and \: (5\pi)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yx3cub2ax7lthjv0bzp2i8973pwjtyx6z4.png)