Answer:
The solution for k is the interval (-3.5,1.5)
Explanation:
we have
![k(x^(2)+1)=x^(2)+3x-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3fjjuln7jcatrznxa7yg2wkb3mnv3ybyrn.png)
![kx^(2)+k=x^(2)+3x-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/km1saavjyyjyb17eogzmnjv8vosojcnn9x.png)
![x^(2)-kx^(2)+3x-3-k=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5cvjo7046jdiav5i6orkcvkve3tjw7d82t.png)
![}[1-k]x^(2)+3x-(3+k)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wqx6v1fdsopo8brmsy9k7xxk8c4yckwc4q.png)
we know that
If the discriminant is greater than zero . then the quadratic equation has two real and distinct solutions
The discriminant is equal to
![D=b^(2)-4ac](https://img.qammunity.org/2020/formulas/mathematics/high-school/72uu6evy9zjnstngz8re21ij3juviep3y6.png)
In this problem we have
a=(1-k)
b=3
c=-(3+k)
substitute
![D=3^(2)-4(1-k)(-3-k)\\ \\D=9-4(-3-k+3k+k^(2))\\ \\D=9+12+4k-12k-4k^(2)\\ \\D=21-8k-4k^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/l8lx5gyjt8wtv6hji4yb5a2hcyofleiwuw.png)
so
![21-8k-4k^(2) > 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ali7w4dxlfm6mltvl6cjy4bgkjct6uo8de.png)
solve the quadratic equation by graphing
The solution for k is the interval (-3.5,1.5)
see the attached figure