Answer:
The measure of angle LMW is
![m\angle LMW=67\°](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qor1clm0anhe3ga94d2i9r446bzlj2bj28.png)
Explanation:
see the attached figure to better understand the problem
step 1
Find the measure of arc MW
we know that
The inscribed angle measures half that of the arc comprising
so
![m\angle MLK=(1)/(2)[arc\ MW+arc\ WK]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tmavnhnluwed4j91hpveufnjs3i6kg35mm.png)
substitute the given values
![65\°=(1)/(2)[arc\ MW+68\°]\\ 130\°=[arc\ MW+68\°]\\ arc\ MW=130\°-68\°=62\°](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1iv9xciddvba0rgpchgp6uogpflypgtsf7.png)
step 2
Find the measure of arc LK
we know that
-----> by complete circle
substitute the given values
![164\°+62\°+68\°+arc\ LK=360\°\\ 294\°+arc\ LK=360\°\\ arc\ LK=360\°-294\°=66\°](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a7o4kleeynrmrtaqgcfcrsx3w5ymmo5sdw.png)
step 3
Find the measure of angle LMW
we know that
The inscribed angle measures half that of the arc comprising
so
![m\angle LMW=(1)/(2)[arc\ LK+arc\ WK]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9jawlx9rqn8esjclcsx59dobzq0gzcbsb9.png)
substitute the given values
![m\angle LMW=(1)/(2)[66\°+68\°]=67\°](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k2q9qymtiznfd1exx40njopu96ztkcjv24.png)