17.7k views
2 votes
If the circumference of a circle is 36, what is the length of an arc of the circle intercepted by a central angle of 30 degrees?

User Esgaldir
by
6.1k points

2 Answers

1 vote

Answer:330 degrees

Step-by-step explanation: It helps by drawing a picture, hope this helps

User AdamKniec
by
5.9k points
4 votes

Answer:
arc\ length=3

Explanation:

The formula for calculate the arc lenght is:


arc\ length=2\pi r((\theta)/(360))

Where "r" is the radius and "
\theta" is the central angle of the arc in degrees.

The formula used to find the circumference of a circle is:


C=2\pi r

Where "r" is the radius.

Then, we can observe that the formula for calculate the arc lenght can be rewritten in this form:


arc\ length=C((\theta)/(360))

Where "C" is the circumference of the circle.

Finally we need to substitute the central angle and the circumference into
arc\ length=C((\theta)/(360)). Then the result is this:


arc\ length=36((30\°)/(360))=3

User Shashank Bhatt
by
5.7k points