Hello!
The answer is:
The second option,
b.)
![C(x)=40.60x+201](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1z0ez4y0finiki736tvlg340f2274ejwyg.png)
Why?
We are given the functions E(x) and K(x), since they both are function of the same variable, we need to add them in order to find the correct option.
From the statement we know the functions:
![E(x)=22.75x+74](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n9z6s4o0iztppn71frbqos8fx77zcymymz.png)
and
![K(x)=17.85x+127](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cv9miseenl39ujk5qm1588jna4nlw8nlnf.png)
So, adding the functions we have:
![C(x)=E(x)+F(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rzldj5jr6sv3i8epryjei0tx84rb8r94qu.png)
![C(x)=(22.75x+74)+(17.85x+127)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z6jp0g4azofcv3afwsz2ea1m8tpyc01dj6.png)
![C(x)=22.75x+17.85x+74+127](https://img.qammunity.org/2020/formulas/mathematics/middle-school/izvm8qytinjxn8k7i74m9hcliezhb0gc14.png)
![C(x)=40.60x+201](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1z0ez4y0finiki736tvlg340f2274ejwyg.png)
Hence, the answer is the second option,
b.)
![C(x)=40.60x+201](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1z0ez4y0finiki736tvlg340f2274ejwyg.png)
Have a nice day!