161k views
4 votes
The area of a square is 64n^36 units. What is the side length of one side of the square? 8n^6 8n^18 64n^6 64n^18

1 Answer

6 votes

Answer:


\large\boxed{8n^(18)}

Explanation:

The formula of an area of a square:


A=s^2

s - side length

We have


A=64n^(36)

Method 1:

Substitute:


s^2=64n^(36)


s^2=8^2n^(18\cdot2) use
(a^n)^m=a^(nm)


s^2=8^2(n^(18))^2 use
(ab)^n=a^nb^n


s^2=(8n^(18))^2\to s=8n^(18)

Method 2:

Substitute:


s^2=64n^(36)\to s=\sqrt{64n^(36)} use
√(ab)=√(a)\cdot√(b)


s=√(64)\cdot\sqrt{n^(36)}


s=8\sqrt{n^((18)(2)) use
(a^n)^m=a^(nm)


s=8\sqrt{(n^(18))^2} use
√(a^2)=a for
a\geq0


s=8n^(18)

User Icecrime
by
7.6k points