Answer:
Option D.
Explanation:
Given that (x-3) is a factor of P(x)=x^3-7x^2+15x-9. If we divide the P(x) by (x-3) we will get a second grade polynomial, which is easier to factorize.
Dividing x^3-7x^2+15x-9 by (x-3), the answer is: x^2 - 4x + 3 with a remainder of zero.
Now, to factorize x^2-4x+3 we just need to find two numbers that equal -4 when added and 3 when multiplied. These two numbers are -1 and -3.
So the complete factorization of P(x) is: (x-3)(x-1)(x-3)
Which is option D.