12.8k views
9 votes
How do I do this?
*Look at the directions in the photo*​

How do I do this? *Look at the directions in the photo*​-example-1
User John Wu
by
8.5k points

2 Answers

4 votes

Answer:

I dont see it well

Explanation:

User Thequark
by
7.5k points
10 votes

Answer:


Area\ of\ material\ required\ for\ the\ first\ box=384\ inches^2\\Area\ of\ material\ required\ for\ the\ second\ box=486\ inches^2\\Area\ of\ material\ required\ for\ the\ first\ box=600\ inches^2\\Total\ Area\ of\ material\ required=1470\ inches^2

Explanation:


We\ are\ given:\\Diameter\ of\ the\ first\ volleyball=8\ inches \\Diameter\ of\ the\ second\ volleyball=9\ inches\\Diameter\ of\ the\ third\ volleyball= 10\ inches.\\Hence,\\We\ know\ that,\\If\ the\ side\ of\ the\ cube\ box\ is\ s, it's\ Total\ Surface\ Area\ =No.\ of\\ faces\ in\ a\ regular\ polyhedron\ *Area\ of\ each\ face\ of\ the\ polyhedron=6*s^2=6s^2\\Hence,\\Lets\ apply\ this\ equation\ in\ finding\ the\ area\ of\ material\ required\ for\ the\\ three\ cases.\\


As\ the\ volleyball\ should\ wholly\ fit\ into\ the\ box,\ the\ diameter\ of\ the\\ volleyballs\ would\ be\ the\ side\ of\ the\ cube\ box.\\Hence,\\For\ the\ first\ volleyball,\\Diameter\ of\ the\ first\ volleyball=8\ inches\\Hence,\\Side\ of\ the\ cubical\ box\ for\ the\ first\ volleyball=8\ inches.\\Hence,\\The\ Total\ Surface\ Area\ of\ the\ first\ box=6s^2=6*8*8=384\ inches^2


For\ the\ second\ volleyball,\\Diameter\ of\ the\ second\ volleyball=9\ inches\\Hence,\\Side\ of\ the\ cubical\ box\ for\ the\ second\ volleyball=9\ inches.\\Hence,\\The\ Total\ Surface\ Area\ of\ the\ second\ box=6s^2=6*9*9=486\ inches^2


For\ the\ third\ volleyball,\\Diameter\ of\ the\ third\ volleyball=8\ inches\\Hence,\\Side\ of\ the\ cubical\ box\ for\ the\ third\ volleyball=10\ inches.\\Hence,\\The\ Total\ Surface\ Area\ of\ the\ third\ box=6s^2=6*10*10=600\ inches^2


Hence,\\If\ you\ are\ asked\ the\ Total\ Area\ to\ make\ all\ the\ boxes,\\ you\ just\ add\ them\ together.\\Hence,\\Total\ Area\ of\ Material\ required\ to\ make\ the\ three\ boxes=384+486+600=1470\ inches^2

User Timaayy
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories