Given:
The graph passes through the given points (4,-2) and (2,0).
To find:
The quadratic function
.
Solution:
We have, quadratic function
...(i)
The graph passes through the given points (4,-2) and (2,0). It means the equation must be true for these points.
Putting x=4 and y=-2 in (i), we get
...(ii)
Putting x=2 and y=0 in (i), we get
...(iii)
Divide (iii) by (ii).
![(0)/(-2)=(a(2-h)^2)/(a(4-h)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/dqamwobbnjrka1loyox1o641l9lhnz571y.png)
![0=((2-h)^2)/((4-h)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ty0dkmkdceymiyfukvsy8ec50oklqwr0p5.png)
![0=(2-h)^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/5r90snc9oinrah891e1z1mor7qg5umy3s3.png)
![0=2-h](https://img.qammunity.org/2022/formulas/mathematics/high-school/jb36zuoxapsl32i3t959y9dsghyjh9qqd3.png)
![h=2](https://img.qammunity.org/2022/formulas/mathematics/high-school/7osz1uz1mp9omvls0mlltx1ed33irl0218.png)
Putting h=2 in (ii), we get
![-2=a(4-2)^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/rag4ao3yq341xgygi8y7kwtvg9xucubp9g.png)
![-2=a(2)^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/lf1dv3eht51ati1gycosl977jygfx9z1q0.png)
![-2=a(4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/zhca3o14skgpsms55jgxql8q2wpz3ky1d4.png)
Divide both sides by 4.
![(-2)/(4)=a](https://img.qammunity.org/2022/formulas/mathematics/high-school/8hew65ppfyw271qcrdg7sb6ik54j6r9zw4.png)
![(-1)/(2)=a](https://img.qammunity.org/2022/formulas/mathematics/high-school/wsysyce0twlbh5akn3d7isc1xgxkzn654i.png)
Putting
and h=2 in (i), we get
![y=-(1)/(2)(x-2)^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/asxjykdn0jvwupf08edlokicytago5u1ux.png)
Therefore, the required quadratic function is
.