59.8k views
3 votes
In right △ABC, the altitude CH to the hypotenuse AB intersects angle bisector AL in point D. Find the sides of △ABC if AD = 8 cm and DH = 4 cm.

User Grdl
by
5.1k points

1 Answer

5 votes

Answer:


AC=8√(3)\ cm\\ \\AB=16√(3)\ cm\\ \\BC=24\ cm

Explanation:

Consider right triangle ADH ( it is right triangle, because CH is the altitude). In this triangle, the hypotenuse AD = 8 cm and the leg DH = 4 cm. If the leg is half of the hypotenuse, then the opposite to this leg angle is equal to 30°.

By the Pythagorean theorem,


AD^2=AH^2+DH^2\\ \\8^2=AH^2+4^2\\ \\AH^2=64-16=48\\ \\AH=√(48)=4√(3)\ cm

AL is angle A bisector, then angle A is 60°. Use the angle's bisector property:


(CA)/(CD)=(AH)/(HD)\\ \\(CA)/(CD)=(4√(3))/(4)=√(3)\Rightarrow CA=√(3)CD

Consider right triangle CAH.By the Pythagorean theorem,


CA^2=CH^2+AH^2\\ \\(√(3)CD)^2=(CD+4)^2+(4√(3))^2\\ \\3CD^2=CD^2+8CD+16+48\\ \\2CD^2-8CD-64=0\\ \\CD^2-4CD-32=0\\ \\D=(-4)^2-4\cdot 1\cdot (-32)=16+128=144\\ \\CD_(1,2)=(-(-4)\pm√(144))/(2\cdot 1)=(4\pm 12)/(2)=-4,\ 8

The length cannot be negative, so CD=8 cm and


CA=√(3)CD=8√(3)\ cm

In right triangle ABC, angle B = 90° - 60° = 30°, leg AC is opposite to 30°, and the hypotenuse AB is twice the leg AC. Hence,


AB=2CA=16√(3)\ cm

By the Pythagorean theorem,


BC^2=AB^2-AC^2\\ \\BC^2=(16√(3))^2-(8√(3))^2=256\cdot 3-64\cdot 3=576\\ \\BC=24\ cm

In right △ABC, the altitude CH to the hypotenuse AB intersects angle bisector AL in-example-1
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.