Answer:
![AC=8√(3)\ cm\\ \\AB=16√(3)\ cm\\ \\BC=24\ cm](https://img.qammunity.org/2020/formulas/mathematics/high-school/keo6s4wuvnqju6yu8nwr2hi9eiok2b5xo9.png)
Explanation:
Consider right triangle ADH ( it is right triangle, because CH is the altitude). In this triangle, the hypotenuse AD = 8 cm and the leg DH = 4 cm. If the leg is half of the hypotenuse, then the opposite to this leg angle is equal to 30°.
By the Pythagorean theorem,
![AD^2=AH^2+DH^2\\ \\8^2=AH^2+4^2\\ \\AH^2=64-16=48\\ \\AH=√(48)=4√(3)\ cm](https://img.qammunity.org/2020/formulas/mathematics/high-school/13ix36c3stszfj8k9chthnoji1fh2k9nd1.png)
AL is angle A bisector, then angle A is 60°. Use the angle's bisector property:
![(CA)/(CD)=(AH)/(HD)\\ \\(CA)/(CD)=(4√(3))/(4)=√(3)\Rightarrow CA=√(3)CD](https://img.qammunity.org/2020/formulas/mathematics/high-school/anqxh7tymbmaz5veqbnr0la6ql0ztlnejc.png)
Consider right triangle CAH.By the Pythagorean theorem,
![CA^2=CH^2+AH^2\\ \\(√(3)CD)^2=(CD+4)^2+(4√(3))^2\\ \\3CD^2=CD^2+8CD+16+48\\ \\2CD^2-8CD-64=0\\ \\CD^2-4CD-32=0\\ \\D=(-4)^2-4\cdot 1\cdot (-32)=16+128=144\\ \\CD_(1,2)=(-(-4)\pm√(144))/(2\cdot 1)=(4\pm 12)/(2)=-4,\ 8](https://img.qammunity.org/2020/formulas/mathematics/high-school/zcdwzl81bnso48tzbylvcb47irydzzfewl.png)
The length cannot be negative, so CD=8 cm and
![CA=√(3)CD=8√(3)\ cm](https://img.qammunity.org/2020/formulas/mathematics/high-school/e790gortv4ggfzrqjiqqsd452vvsldjydv.png)
In right triangle ABC, angle B = 90° - 60° = 30°, leg AC is opposite to 30°, and the hypotenuse AB is twice the leg AC. Hence,
![AB=2CA=16√(3)\ cm](https://img.qammunity.org/2020/formulas/mathematics/high-school/7agjphamt5tpeocl9c73suba10hx1sfrfv.png)
By the Pythagorean theorem,
![BC^2=AB^2-AC^2\\ \\BC^2=(16√(3))^2-(8√(3))^2=256\cdot 3-64\cdot 3=576\\ \\BC=24\ cm](https://img.qammunity.org/2020/formulas/mathematics/high-school/fmh1129izsifm7h2uuvbzeb544ek8o3zql.png)