107k views
5 votes
1. Solve the following for x

8^2x-4=8^5x+1



2^x+6=16^3x+4



(1/2)^x=2^x+3



36^2x=216^3x-1







How much will a car be worth after 8 years if it depreciates in value by 12.6% each year?

1 Answer

2 votes

Explanation:


8^(2x-4)=8^(5x+1)\iff2x-4=5x+1\qquad\text{add 4 to both sides}\\\\2x=5x+5\qquad\text{subtract 5x from both sides}\\\\-3x=5\qquad\text{divide both sides by (-3)}\\\\\boxed{x=-(5)/(3)}\\\\================================


2^(x+6)=16^(3x+4)\\\\2^(x+6)=(2^4)^(3x+4)\qquad\text{use}\ (a^n)^m=a^(nm)\\\\2^(x+6)=2^(4(3x+4))\iff x+6=4(3x+4)\qquad\text{use the distributive property}\\\\x+6=(4)(3x)+(4)(4)\\\\x+6=12x+16\qquad\text{subtract 6 from both sides}\\\\x=12x+10\qquad\text{subtract 12x from both sides}\\\\-11x=10\qquad\text{divide both sides by (-11)}\\\\\boxed{x=-(10)/(11)}\\\\================================


\left((1)/(2)\right)^x=2^(x+3)\qquad\text{use}\ a^(-1)=(1)/(a)\\\\(2^(-1))^x=2^(x+3)\\\\2^(-x)=2^(x+3)\iff -x=x+3\qquad\text{subtract x from both sides}\\\\-2x=3\qquad\text{divide both sides by (-2)}\\\\\boxed{x=-(3)/(2)}\\\\================================


36^(2x)=216^(3x-1)\\\\(6^2)^(2x)=(6^3)^(3x-1)\qquad\text{use}\ (a^n)^m=a^(nm)\\\\6^((2)(2x))=2^(3(3x-1))\iff(2)(2x)=3(3x-1)\qquad\text{use the distributive property}\\\\4x=(3)(3x)+(3)(-1)\\\\4x=9x-3\qquad\text{subtract 9x from both sides}\\\\-5x=-3\qquad\text{divide both sides by (-5)}\\\\\boxed{x=(3)/(5)}\\\\================================


p\%=(p)/(100)\\\\100\%-12.6\%=87.4\%=(87.4)/(100)=0.874\\\\8\ years\to(0.874)^4\approx0.584\to58.4\%\\\\\text{After 8 years, the car will be worth 58.4}\%\ \text{of the initial price.}

User Belynda
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories