Answer:
Explanation:
Apply binomial theorem to expand (a+b)^n where a = r, b = -8 n n = 5
the r^3 term is (5!/(2!*(5-2)!)*r^3*(-8)^(5-3)
=(5*4*3*2*1/1*2*1*2*3)*r^3*(-8)^2
=640*r^3
So the coefficient is 640.
640
Expanding the binomial :
r⁵ - 40r⁴ + 640r³ - 5120r² + 20480r - 32768
The coefficient of r³ is 640
5.6m questions
7.3m answers